What Algebra Is All About

When I first started studying algebra in the ninth grade, no one in my family could explain to me what it was all about. My dad had gone through the eighth grade in South Dakota, and my mom never mentioned that she had ever studied algebra before she took a job at Planter’s Peanuts in San Francisco.

My school counselor enrolled me in beginning algebra, and I showed up to class on the first day not knowing what to expect. On that day, I couldn’t have told you a thing about algebra except that it was some kind of math.

In the first month or so, I found *I liked algebra better than . . .

✓ physical education, because there were never any fist-fights in the algebra class.

✓ English, because the teacher couldn’t mark me down because he or she didn’t like the way I expressed myself or didn’t like my handwriting or didn’t like my face. In algebra, all I had to do was get the right answer and the teacher had to give me an A.

✓ German, because there were a million vocabulary words to learn. I was okay with *der Finger* which means *finger*. But *besetzen*, which means to occupy (a seat or a post) and *besichtigen*, which means to look around, and *besiegen*, which means to defeat, and the zillion other words we had to memorize were just too much. In algebra, I had to learn how to *do stuff* rather than just memorize a bunch of words. (I got C’s in German.)

✓ biology, because it was too much like German: memorize a bunch of words like *mitosis* and *meiosis*. I did enjoy the movies though. It was fun to see the little cells splitting apart—whether it was mitosis or meiosis, I can’t remember.
So what’s algebra about? Albert Einstein said, “Algebra is a merry science. We go hunting for a little animal whose name we don’t know, so we call it x. When we bag our game, we pounce on it and give it its right name.”

What I think Einstein was talking about was solving something like $3x - 7 = 11$ and getting an answer of $x = 6$.

But algebra is much more than just solving equations. One way to think of it is to consider all the stuff you learned in six or eight years of studying arithmetic: adding, multiplying, fractions, decimals, etc. Take all of that and stir in one new concept—the idea of an “unknown,” which we like to call “x.” It’s all of arithmetic taken one step higher.

Many, many jobs require the use of algebra. Its use is so widespread that virtually every university requires that you have learned algebra before you get there. Even English majors, like my daughter Margaret, had to learn algebra before going to a university.

I also liked algebra because there were no term papers to write. After I finished my algebra problems I was free to go outside and play. Margaret had to stay inside and type all night. A lot of English majors seem to have short fingers (die Finger?) because they type so much.

Life is unlivable if it is confined to algebra.
Life is incomplete without it.
Common Questions that Students Have

MAY I USE MY CALCULATOR?

Yes. It is the addition and multiplication tables that you need to know by heart. Once you have them down cold, and you know that the area of a triangle is one-half times base times height, there is little else that you should have to memorize.

When I taught arithmetic, the tests I gave were always taken without the use of a calculator, but when I taught algebra/geometry/trigonometry/calculus/math for business majors/statistics, the tests were always open-book, open-notes and use-a-calculator-if-you-want-to.

There are a lot of times in life when you may need to know your addition and multiplication facts and won’t have access to a calculator, but when you are doing algebra or calculus problems you will almost always have a calculator and reference books handy.

WHAT KIND OF CALCULATOR WOULD BE GOOD?

A basic calculator has these five keys: +, –, ×, ÷, √. Years ago I saw one of those advertised in a magazine for over $100. Recently, at one of those stores that sell everything for about a dollar I paid $1.07 including the sales tax.

Most top-rated universities want their applicants to have four years of high school math. (Beginning algebra is the first of those four years.)

The next three years will be advanced algebra, geometry, and trig. For those courses you will need a “scientific calculator.” It will have sin, cos, tan, !, log, and ln keys. The most fun key is the “!” key. If you press 8 and then hit the ! key, it will tell you what 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 is equal to. Recently, I saw one of those calculators on sale for less than $8. That’s the last calculator you’ll need to learn all the stuff through calculus.*

You might as well get your scientific calculator now.

* Some schools require their calculus students to buy a fancy graphing calculator that costs between $80 and $120. I don’t own one and I’ve never needed one. I spent the money I saved on pizza.
WHAT BACKGROUND DO I NEED TO START ALGEBRA?

If you are feeling unsure, you might try your hand at this quiz. The answers are given on the next page.
The questions are all taken from the four books that precede *Life of Fred: Beginning Algebra*.

Am I Ready for Algebra?

Use just pencil and paper.

1. \(4 \frac{2}{3} \div 3 \frac{1}{3}\) and simplify your answer
 \((\text{from } \textit{LOF: Fractions}, \text{ p. 151})\)
2. If a 12-inch (diameter) pepperoni pizza costs $9.48, how much would one square inch cost? Round your answer to the nearest cent. Use 3 for \(\pi\). \((\text{from } \textit{LOF: Decimals & Percents}, \text{ p. 103})\)
3. A motorboat normally rents for $71. If you don’t sing a sea chanty in the store, you get a 30% discount. How much will the rental price be after the discount? \((\text{LOF: D&P, p. 112})\)
4. Is \(\{(2, 3), (1, 4), (3, 3)\}\) a function? \((\text{LOF: D&P, p. 167})\)
5. Of six pounds of sandwiches, Joe eats 98%, drops 1% overboard, and uses 0.5% for bait. How many ounces are left for the dog to eat? \((\text{LOF: Pre-Algebra 1 with Biology, p. 154})\)
6. If Kim can do 5 bank transactions in 8 minutes, how long would it take Kim to do 18 bank transactions? \((\text{Life of Fred: Pre-Algebra 2 with Economics, p. 26})\)
7. Is it possible for a function whose domain is \(\{A, B, C\}\) and whose codomain is \(\{Y, Z\}\) to be 1-1? \((\text{Life of Fred: Pre-Algebra 2 with Economics, p. 52})\)
The answers: (1) $1 \frac{8}{25}$ (2) 0.0877 which rounds to 9¢ (3) $49.70
(4) Yes (5) 0.48 ounces (6) 28.8 minutes or $28 \frac{4}{5}$ (7) No because functions that are 1-1 must have at least as many elements in the codomain as in the domain.

If you didn’t get at least 70% (5 out of 7) right, the intelligent thing to do might be to start with one of the earlier books in the series.

WHERE ARE THE BRIDGES?

At the end of each chapter are three Cities. They are not tests. There is a lot of math to learn in this first year of high school math. The Cities offer a much-needed chance to practice your algebra. Do not skip any of them. By the time you do the third City in each chapter, you will be doing the problems much more easily.

One Important Rule

When you come to the questions in the Your Turn to Play or in the Cities, you must take out a piece of paper and write out the answers to the questions BEFORE you look at the answers.

At first, the questions will seem easy, and you will be tempted to ignore this rule. But by chapter four (word problems), students who have habitually just looked at the questions and read the answers will often find that they are “lost.”

You will learn a lot more by working the problems.

Just before the Index is the A.R.T. section, which very briefly summarizes much of beginning algebra. If you have to review for a final exam or you want to quickly look up some topic eleven years after you’ve read this book, the A.R.T. section is the place to go.
A Note to Parents

Your children are now on “automatic pilot.” Each day they do one (or more) lessons. The reading in Life of Fred: Beginning Algebra is fun. And because it is fun, they will learn mathematics much more easily.

Five-year-old Fred first encounters the need for mathematics in his everyday life, and then we do the math. This is true for all of the books in the series. The math is relevant. This is different than most math books.

I believe that mathematics should not be taught in a vacuum. It should not be compartmentalized. We are teaching children first, not just math. Other subjects are integrated into the text. I have not taken the oath: “Algebra, the whole algebra, and nothing but the algebra.”

In this book we include some English. Do you know the complete “i before e” rule with its four classes of exceptions? It’s in this book. The army chaplain is at a private library and he pulls a leather-bound book of poetry off the shelf and begins to read a poem. He thinks to himself, “A good example of enjambment.” This word is then defined in a footnote.

Health. Fred and Jack LaRoad decided to head out for an afternoon jog. The other eleven decided to watch TV for five hours. On another occasion, when Fred and Jack were on a six-hour army leave in a town they had never been in before, they headed to a carrot juice bar.

Reading. But before that, they went to the public library. “He loved books and had heard of this library from the chaplain on the army base. It has more than 22,000 books, magazines, and audio tapes. Fred’s eyes and fingers were itching to examine them all.”

Vocabulary. In telling the story of Fred’s life, I use a full adult vocabulary, for example, the words eponymous, hebdomadal, and faux pas. However, the vocabulary is kept simple when I’m explaining the math.

Students are expected to do ALL of the problems. It is really better for them if you don’t help them with any of the problems. It is so important that they learn how to learn by reading. If it takes them two days to figure out a particular problem, that is perfectly fine.

There is an old story of someone who saw a butterfly trying to break out of its chrysalis. He felt sorry for the effort that the butterfly was making and tried to “help” it by breaking open the chrysalis. The butterfly could never fly. It needed to struggle and exercise to develop its wings. (In Life of Fred: Butterflies we learned that butterflies do not use cocoons.)
Contents

Chapter 1 Numbers and Sets.. 17
Lesson 1: Finite/Infinite, Exponents and Counting
Lesson 2: Natural Numbers, Whole Numbers, Parentheses, Braces, and Brackets
Lesson 3: Negative Numbers and Integers
Lesson 4: Ratios and Adding Signed Numbers
Lesson 5: The First City Aly, Arkansas
Lesson 6: The Second City Elk, Washington
Lesson 7: The Third City Ulm, Wyoming

Chapter 2 The Integers... 45
Lesson 8: How to Show Multiplication
Lesson 9: Multiplying Signed Numbers
Lesson 10: Proportion and Inequalities in the Integers
Lesson 11: Circumference of a Circle
Lesson 12: The First City Troy, New York
Lesson 13: The Second City Zion, Illinois
Lesson 14: The Third City Weed, California

Chapter 3 Equations... 82
Lesson 15: Continued Ratios
Lesson 16: Adding $3x + 3x + 4x + 6x + 2x$
Lesson 17: Rectangles, Trapezoids, Sectors, Symmetric Law of Equality, and Order of Operations
Lesson 18: Consecutive Numbers and Solving Equations
Lesson 19: Rational Numbers and Set Builder Notation
Lesson 20: Distance-Rate-Time and Distributive Property
Lesson 21: Reflexive Law of Equality
Lesson 22: The First City Ogden, Utah
Lesson 23: The Second City Peetz, Colorado
Lesson 24: The Third City Xenia, Ohio
Chapter 4 Motion and Mixture. 136
Lesson 25: Proof of the Distributive Law
Lesson 26: A Second Kind of Distance-Rate-Time Problem
Lesson 27: Coin Problems
Lesson 28: Coin Problems with Unequal Number of Coins
Lesson 29: Age Problems
Lesson 30: The First City Larned, Kansas
Lesson 31: The Second City Dugger, Indiana
Lesson 32: The Third City Seward, Alaska

Chapter 5 Two Unknowns. 182
Lesson 33: Transposing
Lesson 34: Solving Systems of Equations by Elimination
Lesson 35: Work Problems in Two Unknowns
Lesson 36: Graphs
Lesson 37: Plotting Points
Lesson 38: Averages
Lesson 39: Linear Equations
Lesson 40: Graphing Equations
Lesson 41: The First City Stigler, Oklahoma
Lesson 42: The Second City Wyoming, Pennsylvania
Lesson 43: The Third City Roswell, New Mexico

Chapter 6 Exponents.. 239
Lesson 44: Solving Systems of Equations by Graphing
Lesson 45: Solving Systems of Equations by Substitution
Lesson 46: Inconsistent and Dependent Equations
Lesson 47: Factorial
Lesson 48: Area of a Square, Volumes of Cubes and Spheres, Like Terms, Commutative Laws
Lesson 49: Negative Exponents
Lesson 50: The First City Seabrook, Texas
Lesson 51: The Second City Florence, South Carolina
Lesson 52: The Third City Glenmora, Louisiana
Chapter 7 Factoring... 282
Lesson 53: Multiplying Polynomials
Lesson 54: Monomials, Binomials, Trinomials
Lesson 55: Solving Quadratic Equations by Factoring
Lesson 56: Factoring: Common Factors
Lesson 57: Factoring: Easy Trinomials
Lesson 58: Factoring: Difference of Squares
Lesson 59: Factoring: Grouping
Lesson 60: Factoring: Harder Trinomials
Lesson 61: The First City Philomath, Oregon
Lesson 62: The Second City Owensboro, Kentucky
Lesson 63: The Third City Slatyfork, West Virginia

Chapter 8 Fractions.. 322
Lesson 64: Job Problems
Lesson 65: Solving Fractional Equations
Lesson 66: Simplifying Rational Expressions
Lesson 67: Adding Rational Expressions
Lesson 68: Subtracting Rational Expressions
Lesson 69: Multiplying and Dividing Rational Expressions
Lesson 70: The First City Winnemucca, Nevada
Lesson 71: The Second City Livingston, Montana
Lesson 72: The Third City Darlington, Wisconsin

Chapter 9 Square Roots... 377
Lesson 73: Pure Quadratics, Square Roots
Lesson 74: Pythagorean Theorem
Lesson 75: The Real Numbers, The Irrational Numbers
Lesson 76: Two Laws: $3\sqrt{x} + 5\sqrt{x} = 8\sqrt{x}$
\[
\sqrt{7\sqrt{8}} = \sqrt{56}
\]
Lesson 77: Fractional Exponents
Lesson 78: Radical Equations, Rationalizing the Denominator
Lesson 79: The First City Scottsbluff, Nebraska
Lesson 80: The Second City Chamberlain, South Dakota
Lesson 81: The Third City Bloomington, Illinois

Chapter 10 Quadratic Equations. 421
Lesson 82: Quadratic Equations in Everyday Life
Lesson 83: Solving Quadratics by Completing the Square
Lesson 84: The Quadratic Formula
Lesson 85: Long Division of Polynomials
Lesson 86: The First City Marshalltown, Iowa
Lesson 87: The Second City Copperopolis, California
Lesson 88: The Third City Silver Spring, Maryland

Chapter 11 Functions and Slope. 459
Lesson 89: Functions
Lesson 90: Slope
Lesson 91: Finding Slopes from Equations
Lesson 92: Slope-Intercept Form of a Line
Lesson 93: Range of a Function, Graphing y = mx + b
Lesson 94: The First City Pleasantville, New York
Lesson 95: The Second City Upper Sandusky, Ohio
Lesson 96: The Third City Elizabethtown, Kentucky

Chapter 12 Inequalities and Absolute Value. 499
Lesson 97: Fahrenheit-Celsius Conversion
Lesson 98: Graphing Inequalities
Lesson 99: Why You Can’t Divide by Zero
Lesson 100: Absolute Value
Lesson 101: Solving Inequalities in One Unknown
Lesson 102: The First City Mechanicsville, Virginia
Lesson 103: The Second City Saint Augustine, Florida
Lesson 104: The Third City Fort Lauderdale, Florida

A.R.T. section (quick summary of all of beginning algebra). 531
Index. 541
Chapter One

Lesson One—Finite/Infinite, Exponents and Counting

He stood in the middle of the largest rose garden he’d ever seen. The sun was warm and the smell of the roses made his head spin a little. Roses of every kind surrounded him. On his left was a patch of red roses: *Chrysler Imperial* (a dark crimson); *Grand Masterpiece* (bright red); *Mikado* (cherry red). On his right were yellow roses: *Gold Medal* (golden yellow); *Lemon Spice* (soft yellow). Yellow roses were his favorite.

Up ahead on the path were white roses, lavender roses, orange roses and even a blue rose.

Fred ran down the path. In the sheer joy of being alive, he ran as any healthy five-year-old might do. He ran and ran and ran.

At the edge of a large green lawn, he lay down in the shade of some tall roses. He rolled his coat up in a ball to make a pillow.

Listening to the robins singing, he figured it was time for a little snooze. He tried to shut his eyes.

They wouldn’t shut.

Hey! Anybody can shut their eyes. But Fred couldn’t. What was going on? He saw the roses, the birds, the lawn, but couldn’t close his eyes and make them disappear. And if he couldn’t shut his eyes, he couldn’t fall asleep.

You see, Fred was dreaming. He had read somewhere that the only thing you can’t do in a dream is shut your eyes and fall asleep. So Fred knew that he was dreaming and that gave him a lot of power.

He got to his feet and waved his hand at the sky. It turned purple with orange polka dots. He giggled. He flapped his arms and began to fly. He settled on the lawn again and made a pepperoni pizza appear.

In short, he did all the things that five-year-olds might do when they find themselves King or Queen of the Universe.
Soon he was bored. He had done all the silly stuff and was looking around for something constructive to do. So he lined up all the roses in one long row.

They stretched out in a line in both directions going on forever. Since this was a dream, he could have an unlimited (infinite) number of roses to play with.

When Fred was three years old, he had spent some time studying physics and astronomy. He had learned that nothing in the physical universe was infinite. Everything was finite (limited). Every object could travel only at a finite speed. Even the number of atoms was finite. One book estimated that there are only \(10^{79}\) atoms in the observable universe. \(10^{79}\) means 10 times 10 times 10 . . . a total of 79 times, which is 1,000,000,000,000,000,000,000,000,000,000,000,000. That is a lot of atoms! (The “79” is an exponent—something we’ll deal with later.)

Now that he had all the roses magically lined up in a row, he decided to count them. Math was one of Fred’s favorite activities. Now, normally when you’ve got a bunch of stuff in a pile to count,

you line them up

and start on the left and count them

But Fred couldn’t do that with the roses he wanted to count. There were too many of them. He couldn’t start on the left as he did with his dolls. Dolls are easy. Roses are hard.

Now it’s your turn to play with some of the things covered thus far. Take out a piece of scratch paper and write out the answers for each of the
Some people like to argue that infinite sets don’t really exist. “After all,” they say, “they’re just a figment of your imagination. It’s all in your head.”

By that same argument I could prove that pain doesn’t exist. When you cut your finger, the pain is experienced in your brain.

And the pleasure of a bite of warm pizza doesn’t exist.

And the number three doesn’t exist.

And truth doesn’t exist.

Just because it is happening inside your skull doesn’t mean that it doesn’t exist.

When you want to count something, one of the easiest ways is to line them up in a row and count.

A hard question: Why doesn’t it make a difference which order you line them up? Why do you always get the same answer?
1. Nothing in the physical universe is infinite. There are a finite number of grains of sand.

2. \(3 \times 3 \times 3 \times 3\) which is 81.

3. \(2^5\) is \(2 \times 2 \times 2 \times 2 \times 2\) which is 32. \(5^2\) is \(5 \times 5\) which is 25. So \(2^5\) is larger.

4. The set of roses in a dream, the set of even natural numbers, and the set of all possible melodies are all things that we can conceive. They are not things we can touch. To find infinite sets, one of the best places to look is your mind.

5. If you keep multiplying 1 times itself, you will always get an answer equal to 1.

6. \(10^2 \times ? = 10^5\) is a restatement of the question.
 \[100 \times ? = 100,000.
 100 \times 1000 = 100,000
 10^2 \times 10^3 = 10^5\]

7. Wow. That is something that most people never think about. They would say that it’s obvious that the way you line up the items won’t affect how many there are.

 Could it be that it’s obvious to them because that’s what they’ve always experienced? But suppose the world were created a little differently. Suppose that the order in which you lined up the objects affected how many there were? Then everyone would go around saying that it’s obvious that the way you line up objects affects how many there are. One of the enduring mysteries of mathematics is how well the stuff that goes on in our heads reflects what goes on out there in the “real world.” That didn’t have to happen.

 One of the fun things I sometimes do in a calculus class (when we’re studying infinite series) is to write on the board: \(1 - 1 + 1 - 1 + 1 - 1 + \ldots\) and ask the students what the sum is.

 If I add together the pairs I get \((1 - 1) + (1 - 1) + (1 - 1) + \ldots\)
 which is \(0 + 0 + 0 + \ldots\) which equals zero.

 If I combine the second and third numbers together, the fourth and fifth numbers together, etc., I get \(1 - 1 + 1 - 1 + 1 - \ldots = 1 + 0 + 0 + 0 + \ldots\) which equals one.
Index

abscissa 203
absolute value. 515-517, 519
adding fractions. . . 340-343, 346
adding integers 35, 36
Aesop’s fable of the grasshopper
and the ant 207
age problems. 159-161, 163,
 164, 170, 176, 177, 191
alliteration 159
area of a square. 258
area of a trapezoid. 95
Article 114 of the Weimar
 Constitution of Germany
 104
associative law of addition
 24, 29
atomic weight................. 248
Avogadro’s number 248
bases 262
binomial 287
braces. 21, 23, 24, 39
brackets. 21-23
cancel crazy 373, 374
centimeter 342
Christina Rossetti 336
circumference 24, 62, 241
codomain 461, 481
coefficient 63
combining like terms 87
commutative law of addition
 356
commutative law of multiplication
 264
completing the square. . . 428, 429
complex fractions. 352, 353
conjugate. 409
consecutive even integers 99
consecutive numbers 98
consecutive odd integers 99
continued ratio 83-85, 120,
 131, 139, 153
conversion factor 342, 375, 394
division of signed numbers ... 51
distance-rate-time problems
 .. 109, 111, 120, 121,
 123, 124, 130, 131,
 141-143, 163, 164,
 169, 312, 315
distributive law 23, 29, 109
distributive law—the proof
 137, 138
dividing by zero 510-512
dividing fractions 351-354
domain 461, 463, 481
epidemic 284
enjambment 479
epinephrine 108
eponymous 422
Erasmus 82
exponents 18-20, 29, 33, 47, 247
factorial 73, 254
factoring
 common factor 296, 297
difference of squares
 301, 302
easy trinomials 298-300
grouping 303-305
harder trinomials 306-311
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>factors</td>
<td>339</td>
</tr>
<tr>
<td>Fadiman’s Lifetime Reading Plan</td>
<td>266</td>
</tr>
<tr>
<td>Fahrenheit (the man)</td>
<td>25</td>
</tr>
<tr>
<td>Fahrenheit and Celsius</td>
<td>499-501, 526, 529</td>
</tr>
<tr>
<td>fenestration</td>
<td>137</td>
</tr>
<tr>
<td>finite</td>
<td>18, 29, 111</td>
</tr>
<tr>
<td>fractional equations</td>
<td>328-332</td>
</tr>
<tr>
<td>fractional exponents</td>
<td>400</td>
</tr>
<tr>
<td>function—definition</td>
<td>460, 462</td>
</tr>
<tr>
<td>function—examples</td>
<td>460-463, 466, 467</td>
</tr>
<tr>
<td>gram</td>
<td>57</td>
</tr>
<tr>
<td>graph y = log x by point-plotting</td>
<td>228</td>
</tr>
<tr>
<td>graphing any equation</td>
<td>221, 222</td>
</tr>
<tr>
<td>graphing inequalities in two unknowns</td>
<td>503-509, 527</td>
</tr>
<tr>
<td>greater than</td>
<td>53, 59</td>
</tr>
<tr>
<td>Greek alphabet</td>
<td>219</td>
</tr>
<tr>
<td>Guess the Function game</td>
<td>463, 464, 489, 492, 493, 496, 514, 515</td>
</tr>
<tr>
<td>hebdomadal</td>
<td>214</td>
</tr>
<tr>
<td>heptathlon</td>
<td>74</td>
</tr>
<tr>
<td>Heron’s formula</td>
<td>418</td>
</tr>
<tr>
<td>hyperbola</td>
<td>224, 518</td>
</tr>
<tr>
<td>hyperbole</td>
<td>102</td>
</tr>
<tr>
<td>hypotenuse</td>
<td>396</td>
</tr>
<tr>
<td>i before e, except after c</td>
<td>380, 381</td>
</tr>
<tr>
<td>iatrogenic injuries</td>
<td>434</td>
</tr>
<tr>
<td>identity function</td>
<td>491</td>
</tr>
<tr>
<td>image</td>
<td>461</td>
</tr>
<tr>
<td>inconsistent equations</td>
<td>252, 255</td>
</tr>
<tr>
<td>index</td>
<td>400</td>
</tr>
<tr>
<td>inequalities in one unknown</td>
<td>520-522</td>
</tr>
<tr>
<td>infinite</td>
<td>18, 29, 111</td>
</tr>
<tr>
<td>infinite geometric progression</td>
<td>523</td>
</tr>
<tr>
<td>infinite numbers</td>
<td>398</td>
</tr>
<tr>
<td>infinite sets</td>
<td>19</td>
</tr>
<tr>
<td>integers</td>
<td>22, 29</td>
</tr>
<tr>
<td>interior decorating—adding fractions</td>
<td>340</td>
</tr>
<tr>
<td>Invent a Function game</td>
<td>463, 483, 485, 490, 492, 497</td>
</tr>
<tr>
<td>irony</td>
<td>183, 403</td>
</tr>
<tr>
<td>irrational numbers</td>
<td>392</td>
</tr>
<tr>
<td>job problems</td>
<td>324-326, 386, 423</td>
</tr>
<tr>
<td>less than</td>
<td>51, 59</td>
</tr>
<tr>
<td>limit—as defined in calculus</td>
<td>516</td>
</tr>
<tr>
<td>linear equations</td>
<td>217, 218</td>
</tr>
<tr>
<td>long division of polynomials</td>
<td>442-446</td>
</tr>
<tr>
<td>Marx Brothers movies</td>
<td>57</td>
</tr>
<tr>
<td>mean average</td>
<td>211, 213</td>
</tr>
<tr>
<td>median average</td>
<td>211, 213</td>
</tr>
<tr>
<td>Mencius</td>
<td>529</td>
</tr>
<tr>
<td>mixture problems</td>
<td>154, 169, 170, 176, 177</td>
</tr>
<tr>
<td>mnemonics</td>
<td>345, 356</td>
</tr>
<tr>
<td>mode average</td>
<td>211, 213</td>
</tr>
<tr>
<td>monomials</td>
<td>287, 288</td>
</tr>
<tr>
<td>Mt. Everest</td>
<td>26</td>
</tr>
<tr>
<td>multiplying binomials</td>
<td>285, 286</td>
</tr>
<tr>
<td>multiplying fractions</td>
<td>351, 352</td>
</tr>
<tr>
<td>multiplying signed numbers</td>
<td>48, 50, 51, 60</td>
</tr>
<tr>
<td>natural numbers</td>
<td>21, 29</td>
</tr>
<tr>
<td>negative exponents</td>
<td>267-269, 399</td>
</tr>
<tr>
<td>negative numbers</td>
<td>22</td>
</tr>
<tr>
<td>negative times a negative equal a positive—the proof</td>
<td>115, 116, 119</td>
</tr>
<tr>
<td>null set</td>
<td>23, 24, 29</td>
</tr>
</tbody>
</table>
Index

number line. 22, 23
oral literature. 263
order of operations. 96, 273
ordered pair. 201
ordinate. 203
origin. 207, 226
parabola 224
parentheses............... 21
passing a law today that made
what you did yesterday
illegal.................... 46
perfect square numbers. ... 392
perimeter. 94, 127, 415
Phillips screws 25
pi 64-66, 295
plotting a point. 201, 205, 210
point plotting 221, 222, 506
polynomial 287, 288
principal square root. ... 380, 472
proportion 59
pure quadratic 378, 379, 386
Pythagorean theorem. ... 385, 386, 450
quadrants. 202
quadratic 291
quadratic formula. 435-437
radical equation. 404, 406, 408
radicand. 396
range of a function........ 484, 485, 491
ratio. 31, 58
rational expressions. 337
adding 340-342, 346
dividing 351-354
multiplying 351, 352
simplifying 337-339
rational numbers. 103, 104, 112
rationalizing the denominator...... 406, 407
real number line......... 392
real numbers. 391
reciprocal 373
rectangle............... 94
rectangular coordinate system
................................ 257
rectangular parallelepiped. ... 378
reflexive property of equality
................................ 115
right triangle 385
sector 94
set 21, 39
set builder notation...... 104
sets are equal—definition. 39
seven famous words for
simplifying fractions
................................ 339
simplify a square root..... 397
six pretty boxes. 123-126, 130,
133, 134, 142, 157, 164,
167, 171, 174, 209
slide rule 63
slope 468-472
slope-intercept form of the line
................................ 480, 481
solving quadratic equations
by completing the square
................................ 426-430, 435
by factoring............. 291-293
quadratic formula. 435-437
solving systems of equations
by graphing 239-241
elimination method. ... 189-193,
196, 197, 228, 236
substitution method. .. 243, 244
stamps problem 153
Stanthony 57
subset 485
subtracting fractions..... 346-348, 351
You have mastered all of beginning algebra. Next comes:
➢ *Life of Fred: Advanced Algebra*
➢ *Life of Fred: Geometry*
➢ *Life of Fred: Trig.*

After two years of college calculus, you will be a junior and ready to declare that you are a math major.

Being a math major! Yes.
That’s a lot more fun than being:
 Sheldon
➢ an English major—and writing long term papers
➢ a chemistry major—and getting acid burns in the lab
➢ a psychology major—and dealing with all the abnormals
➢ a history major—and learning all those dates.

It’s your choice.